라벨이 Math인 게시물 표시

[ Essay - Technology, Essay - Intuition ] Chat GTP시대의 도래와 생각하는 방식에 대해 : 개발자의 미래에 대해

이미지
벌써 올해도 반쯤 지나 뜨거운 여름이 다가왔다. 굉장히 빠르게 지나간듯한 느낌이 드는데  아마 의미있는 시간을 보냈다는 이야기이기 때문에  그렇게 나쁜 신호는 아닐 것 이다. 괴로운 시간이였다면, 1초가 1년 같이 느껴졌을테니 말이다. 더위에 매우 약한 나에게 있어서는 지옥과 같은 시기이기도 하지만 늘 그렇던 것 처럼 에어컨 덕분에 어찌저찌 버틸 수 있을 것 같다. 어쨋든, 이번에는 저번의 에세이 주제, Chat GTP시대의 도래와 생각하는 방식에 대한 이야기에 이어서  과연 개발자의 미래는 어떻게 될 것인가에 대해 이야기를 나누어보려고 한다. 어쩌면 모두가 인식하고 있듯이 지금 2025년 현재,  꽤나 중요한 시기에 직면하고 있는지도 모른다. 왜냐하면, 생성AI의 발전 속도가 생각보다 빠르게 발전하고 있고,  그에 따라 실제 업무에서도 빠르게 사용되어지고 있기 때문이다. 이러한 상황에서 개발자에게 있어서 가장 두려운 점은  당연히 생성AI에 의해 개발자가 대체될 것 이라는 두려움일 것 이다. 이는 개발자에게만 한정된 이야기는 아니지만 말이다. 아마 필드에서 나와 같이 일하고 있거나  개발자로서 직업을 가지려는 생각이 있는 사람이라면  한번쯤은 생각해볼법한 주제라 생각 한다. 물론 미래가 정확히 어떻게 될 지는 알 수 없으나  이런 생각을 함으로써 몇 가지 힌트는 얻게 될지도 모르니  만약 얻게 된다면 미래에 대한 방향성을 조금이나마 올바른 쪽으로 돌릴 수 있을 것 이다. 이 글을 끝맽을 때는 조금이라도 힌트에 도달하기를 바란다. 과거의 역사 이러한 의문에 대한 해결책으로서 일반적으로 자주 사용하는 방법이 있다. 바로 역사를 보는 것 이다. 물론 이러한 역사를 해결책을 찾는거에 대한 전제조건은  우리가 '구 인류'라는 전제조건이 있었을 때 의미가 있다. 그러니깐 현대인도 기원전 8세기의 고대 로마인도  본질적으로 다르지 않다는 것을 인정해야만 한다. 예컨데...

[ Math, Computer Science, Machine Learning, NN ]교차 엔트로피(Cross Entropy)에 대해 : 뉴런 네트워크와 교차 엔트로피

이미지
이전 포스팅에서 엔트로피와 교차 엔트로피에 대한 이야기를 마무리지었고, 예측된 확률 분포와 실제 확률 분포가 같을 때 교차 엔트로피와 엔트로피의 값이 같아진다는 결론을 내렸다. 그렇다면, 실제로 뉴런 네트워크에서 사용하는 교차 엔트로피와 이전 포스팅에서 이야기했던 엔트로피에 대한 이야기를 해보자. 뉴런 네트워크의 교차 엔트로피 그렇다면 뉴런 네트워크의 교차 엔트로피는 무엇일까? 왜냐하면 이전 포스팅에서 다룬 교차 엔트로피는 엄밀히 말하면 정보통신쪽의 교차 엔트로피이기 때문이다. 물론 결론적으로 교차 엔트로피는  손실 함수에서 사용되고 있기 때문에  따로 논하지 않아도 비슷하다는 것은 추측이 가능하다. 재미있게도 정보 통신의 교차 엔트로피와  뉴런 네트워크의 교차 엔트로피가 차이 점은  일반적으로 로그 밑의 상수가 다르다. 통신은 비트로 이루어지기 때문에 0과1이며 이에 따라  밑 상수가 2가 되지만, 뉴런 네트워크는 일반적으로 그렇지 않다. 뉴런 네트워크에서는 비트를 나타내는 2가 아닌  밑 상수가 오일러 상수인 자연 로그를 사용 한다. 따라서 일반적인 뉴런 네트워크에서의 교차 엔트로피 방정식은  아래와 같은 수식으로 나타낼 수 있을 것이다. 뉴런 네트워크의 교차 엔트로피 방정식 그렇다면, 여기서 더 나아간다면  한 가지 의문점이 들 수 있을 것 이다. 왜 굳이 자연 로그를 사용하는 의문이다. 왜냐하면, 자연 로그를 사용하던, 밑이 2인 로그를 사용하던  계산은 문제 없이 산출 가능하고, 산출된 값이 틀린 것도 아니기 때문이다. 이에 대해 정확한 정보를 찾을 수는 없었기 때문에 확실하지는 않지만 아래와 같은 정보는 찾을 수 있었다. [1]   ① 단위의 차이일 뿐이며,  경우에 따라서 밑 상수가 2인 로그가 빠를 수 있다. (km/h와m/s의 차이 정도) ② 비용이 많이 부분은 교차 엔트로피의 계산이 아니기 때문에 크게 신경 쓸 부분은 아니다. 물론 일반적인 경우에...

[ Math, Computer Science, Machine Learning, NN ]교차 엔트로피(Cross Entropy)에 대해 : 기본 개념, 교차 엔트로피에 대한 이해

이미지
이전 까지 해서 엔트로피가 무엇이고, 이에 대한 이해를 위해 이야기를 나누어봤다. 이제는 본격적으로 이번 주제의 목표이기도 한  교차 엔트로피에 대한 이야기를 해보자. 교차 엔트로피에 대해 이전 포스트로 부터 엔트로피란, 정보량이기도 하지만 컴퓨터의 근본을 이루고 있는 단위인 비트이기도 하고 원문이 있고 이를 예와 아니요를 통해 원문을 알아내야 할때 이 원문을 하나 씩 보낸다고 했을 때의  원문 속의 하나를 얻어내기 위해 필요한 질문의 갯수  즉,  비트의 갯수 이기도 하다. 이에 랠프 하틀리는 이 값을 구할 수 있는 방정식을 제시 했고, 아래와 같은 방정식으로 이 비트의 갯수를 H로 했을때 이에 대한 값을 구할 수 있다. 하지만, 이는 어떤 사건에 대해 나올 수 있는 확률이 모두 동일 할 때 성립하는 방정식으로 이 때 최대의 엔트로피를 얻어낼 수 있다. 예컨데, 동전 던지기를 할 경우  앞면, 뒷면의 각각 50%일 경우에 성립 한다. 그렇기 때문에 어떤 사건에 대해 나올 수 있는 확률들이  상이한 현실 세계에서 이를 이용하기에는 무리가 있다. 이에 대해 클로드 섀넌은  정보의 불확실성에 대해 포인트를 잡고 해당 사건에 대한 평균 불확실성(엔트로피)를 구하는 방정식을  아래와 같이 제시 했다. 여기 까지가 이전 포스팅에서 다루었던 내용이다. 그렇다면 교차 엔트로피란 무엇일까? 사실 꽤 나 간단한 개념이다. 교차 엔트로피는 메세지의 길이에 대한 엔트로피를 의미 한다. 교차 엔트로피에 대한 이해 이전 엔트로피에서 사용한 예를 조금 바꿔서 산출 값을 간단하게 하기 위해 눈의 수가 6개가 아닌 눈의 수가 8개인 주사위를 던진다고 가정하고, 확률들도 정수 값들이 나오게끔 최대한 수정하겠다. 엘리스는 자신이 던진 주사위의 결과를 보내려한다. 정보 하나 당, 평균 몇 만큼의 비트를 보내야할까? 경우의 수가 8개 되니, 아래와 같이 꽉찬 3비트가 될 것이다. 1(000), 2(001), 3(010), 4(...

[ Math, Computer Science, Machine Learning, NN ]엔트로피(Entropy)에 대해 : 기본 개념, 엔트로피에 대한 이해

이미지
나는 손실 함수의 구현에 앞서  자료를 찾아보던 도중 손실 함수에는  교차 엔트로피라는 용어가 붙어 있는 경우가 많았다. 이에 대해 알아보려 했으나, 교차 엔트로피가 무엇 인지에 대해 찾아보기 힘들었기에 교차 엔트로피에 대한 것을 정리함과 동시에 이를 공유하려 한다. 교차 엔트로피에 대해 이야기를 나누어보기 전에 먼저 엔트로피에 대한 이해가 필요할 것이다. 그 후 교차 엔트로피에 대한 이야기를 하고, 이를 머신 러닝에서 어떻게 이용하고 있는지를 마지막으로 이번 주제에 대한 내용을 마무리 하려고 한다. 엔트로피의 기본 개념 나는 머신 러닝과 관련 없는 글을 작성할 때 엔트로피라는 말을 자주 사용 한다. 여기서 엔트로피는 해소되지 않기 때문에 쌓이고  최대로 팽창되었을 때 빅뱅과 같은 폭팔을 야기하는 어떤 음의 물체 즉, 리프킨 세계관의 엔트로피를 말한다. 이 손실 함수에서 사용하는 엔트로피는 조금 다르다. 이 엔트로피는 정보 통신 쪽의 개념으로 지금 사용되고 있는 엔트로피는  Claude Shannon 에 의해 제시된 개념이다. 재미있게도 새넌의 엔트로피는 열역학의 엔트로피와 동일한 면이 있다고 한다. 열역학의 엔트로피에서 파생된 것이  리프킨의 엔트로피 세계관이기도 하기 때문에 조금은 놀라웠다. 어쨋든 정보 통신에서의 엔트로피는  전달된 메시지의 가치는 메시지의 내용이  얼마나 놀라운지에 달려 있다는 것이다. 그렇기에 어떤 사건(이벤트)이 발생할 가능성이 낮은 경우  해당 이벤트가 발생 했거나 발생할 것임을 아는 것이 더 중요하다. 발생 확률이 1에 가깝다면, 가치(놀라움)는 낮아질 것이고 발생 확률이 0에 가깝다면, 가치(놀라움)는 높아 진다. 이는 당연하다고 한다면 당연할 것이다. 왜냐하면 내가 내일 저녁밥을 먹는다는 확률은 1에 가깝다. 하지만, 내가 내일 저녁밥을 먹지 않는다는 확률은  0에 가깝기 때문에  내가 내일 저녁밥을 먹지 않는다는 정보는 주위 사람들에게는 ...

[ Essay - Technology, Neural Network, IT, Math] 왜 뉴런 네트워크에서 편향(bias)이 필요한가?

이미지
일반적으로 Input으로 부터 시작해  히든 레이어를 거쳐,  Output의 값을 추출해 내는 것이 뉴런 네트워크이다. 새로운 토이 프로젝트에 진행하기 앞서 나는 우선 Python에서 뉴런 네트워크가 어떻게  표현되는지에 대해 알아야 할 필요가 있었고, 이에 대한 튜토리얼을 포함해  과거에 배웠던 이론들과 연결시키는 작업을 하고 있었다. 그런 도중, 나는 갑자기 편향(Bias)값에 대해 의문점이 들었다. 왜 편향 값이 필요할까에 대한 의문이다. 물론 그런 것은 그냥 넘어 갈 수도 있다. 엄밀히 말하면  이런 의문들은 단순한 개발자로서는 필요 없다. 하지만 이는 탐구하는 것을 좋아하는  나의 입장에서는 무척이나 중요한 일이다. 그렇기에  이번에는 좀 더 나아가기에 앞서 이 편향(Bias)이라는 것이 왜 필요한지에 대해 이야기를 해보자. 편향에 대한 정의 한 가지 알아야할 것은 편향은  뉴런 네트워크에서 나온 용어가 아니라는 점일 것이다. 정확히 말하면, 이 편향이라는 개념은 뉴런 네트워크 이론이  대수학(Generic Algebra)에서 차용해온 용어(T erm )로서 뉴런 네트워크만의 개념은 아니다. 위키피디아 영문판에 따르면 통계에서 사용하는  편향에 대해 아래와 같이 설명한다. Statistical bias is a feature of a statistical technique or  of its results  통계적 편향은 통계적 기법 또는 통계의 결과에 대한  특징(feature)로서 where by the expected value of the results differs  실제 정량적인 매개변수와 다르게  from the true underlying quantitative parameter being estimated 결과의 예상 값이 추정하는 것을 말한다. 즉, 명확히 정략적으로 표현되는 것이 아닌 추정 값이라는 이...

[ Math ] proof of differential that Backpropagation algorithm sigmoid function (머신 러닝 - 역 전파 알고리즘 시그모이드 함수 미분의 증명)

이미지

[ Machine Learning by Andrew Ng ] Vector , Matrix

이미지
・ Machine Learning(matrix, Vector) ①스칼라값의 사칙연산 ・ 덧셈 ・ 뺄셈 ・ 곱셈 ・ 나눗셈 ② 행렬과 벡터의 곱셈 ③ 행렬과 행렬의 곱셈   ④ 항등 행렬 (Identity matrix) 행렬에서는 행렬 A 와 B 를 곱한 값과 행렬 B 와 A 를 곱한 값이 같지 않다 . 하지만 이것이 성립하는 행렬이 있는데 ,  이것을 바로 단위행렬 (Identity matrix) 이라 한다 . ⑤ 전치행렬 (transposed matrix)