라벨이 Loss Function인 게시물 표시

[ 프로젝트 BEP ] 최종장 - 엔지니어로서의 마인드셋에 대해 : 우수한 엔지니어는 누구이고, 가져야할 마인드 셋에 대해

이미지
  들어가면서 이제 2025년도 얼마 남지 않은듯 하다.  조금 길어질 수도 있기 때문에  실제로 업로드 하는 것은 새해 이후가 될 가능성도 있으나  올해는 이 글로 마무리 해보려고 한다. 이제 이 최종장을 끝으로 이 프로젝트를 다소 마무리 할 수 있을 것 같다. 물론 전체적으로 글 자체가 부족한 부분이 여려 곳 보이지만,  이는 천천히 개선하기로 하고 일단 마무리를 잘 지어보려고 한다. 이 프로젝트의 목표는 어디까지나 주니어 엔지니어(넓은 범위로서)에게  도움이 될 수 있는 부분을 정리해 놓은 것 이며, 이를 전달하는 것에 주력을 했다. 정확히는 그 사이에 몇 번이나 직장은 바뀌었지만,  내가 다니고 있는 회사에서 작게는 멘터,  크게는 주니어 교육에 활용하기 위한 초안이였다. 들어가기 앞서서 먼저 개발자는 무엇인가에서 부터 시작해서,  수학은 필요한가, 그리고 학위에 대한 이야기를 나누어보았고, 그 다음으로 컴퓨터가 무엇인가에 대해서는,  가장 첫 장인 컴퓨터 개론에서 메모리 손실과 함께 설명하였다. 다음으로는 개발 방법론과 시스템 설계,  그리고 프로그래밍 언어에 대한 이야기로 간단하고 이론적인 이야기를 하였다. 눈치가 빠른 사람은 알 수 있듯이,  현실에서 가질 수 있는 몇 가지 의문으로 시작해서  컴퓨터라는 하드웨어 부터 시작해서,  프로젝트(개발 방법론), 설계, 프로그래밍 언어 순으로  일부러 점점 컴퓨터 세계로 들어가도록 구성을 해 놓았다. 여기서 한 걸음 더 나아가자면, 알고리즘이 들어갈 수는 있겠으나  어디까지나 가볍게 전달하는대에 목적이 있기도 하고,  개인적으로는 당장은 크게 중요하지 않은 부분이 라고 생각 했기 때문이다. 먼저 이 부분에 대해서 좀 더 자세히 이야기해보도록 하자. 시작 부터 모든 지식을 쌓을 수는 없다 이는 개발 영역에서만 해당되는 이야기는 아니지만,  모든 것에는...

[ Neural Network, Python, Loss Function ] Python에서 뉴럴 네트워크는 어떻게 표현되는가? : 손실 함수의 구현

이미지
이전 포스트에서 손실 함수와 역전파에 대해 왜 필요한지에 대한 솔루션 관점에서 이야기를 해 봤다. 어느 정도 뉴런 네트워크에 대한 이미지가 잡히는듯 하다. 이제 본격적으로 손실 함수와 구현에 대한 이야기를 해보자. 손실 함수의 구현 먼저 손실 함수의 구현을 해보자. 손실 함수를 구현할 수 있다면, 앞서 구현했던 예측 값들이 잘 계산되어졌는지를  이 손실 함수에서 보여줄 것이다. 여기서 구현한 코드가 정말로 잘 구현되었는지는  같은 input으로 구글의 tensorflow의 Keras에서 제공하는 모듈로 이진 교차 엔트로피와 범주형 교차 엔트로피의 결과물과 다른지를 확인해 구현이 올바른지를 증명하려고 한다. 또한 샘플 데이터로 사용하고 있는 실제 확률 분포가 일반적인 행렬로 되어있지 않고, 10진수로 표현되어 있는다. 예컨데, 아래와 같이 분류가 되어 있다고 가정해보자. 1은 고양이, 2는 개, 3은 새, 4는 소와 같이 분류하였다. 이를 ont hot encoding화 하면 아래와 같다. 즉, one hot encoding은 분류를 이진화 하는 것이라 말할 수 있다.   내가 이용하는 데이터는 이 처럼 이진화 되어있지 않아 정확히 수식 그대로 사용할 수 없기 때문에 이 계산하기 위한  convertY_true 클래스를 추가해 one hot encoding 처리를 하는 함수를 추가 했다. 이항 교차 엔트로피의 구현 기존 구현에서 추가된 코드는 아래와 같다. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 class  Loss:      def  BCE_calculate( self , output, y):          #상속 받은 이진 교차 엔트로피를 ...

[ Neural Network, Python, Loss Function, Back Propagation ] Python에서 뉴럴 네트워크는 어떻게 표현되는가? : 손실 함수와 역전파에 대해

이미지
다음으로 손실 함수와  역전파 알고리즘에 대해 이야기를 나누어보자. 이전 포스트에서 이야기한바와 같이  손실 함수는 비용 함수는 사실상 같은 의미로 사용되어지고 있다. 나는 처음에 비용 함수를 선호했으나, 한국어에서는 손실 함수 쪽이 좀 더 의미가 정확하게 전달되기 때문에  이 후 비용 함수를 손실 함수 쪽으로 부르기로 하겠다. 이런 예측한 순전파에 대한 오류률을 나타내는  손실 함수 그리고 역전파까지 구현까지 가능하다면, 이제 기본적인 뉴런 네트워크 아키텍처를 구축했다고 볼 수 있을 것이다. 순(방향)전파를 진행해 예측 값을 얻어내고  손실 함수와 역전파를 이용해 오류률이 최소화된  값으로 각 노드를 최적화 해준다면  더 높은 정확도를 가지게 될 것이며 이로서 정말로 우리가 알고 싶은 판단을  머신 러닝이라는 의미대로 0과 1로 이루어진 기계가 내려주게 될 것이다. 이런 과정을 통해 최종적으로는  이 사진이 고양이인지 사람인지 등의 판단이 가능해지는 것 이다. 다만, 여기서 이야기하고 다루고자하는 내용은  자세한 수학적인 내용까지는 하지 않고, 이 솔루션이 왜 필요하게 되었는지를 중심으로 이야기할 것 이다. 수학적인 내용 과거 나의  Machine Learning by Andrew Ng 라벨을  의 포스트들을 참고하거나 나의 포스트 보다 훌륭한  다른 사람들이 작성한 포스트를 참고하기를 바란다.   그렇다면 이제 본격적으로 이야기를 시작해보자. 순전파를 통해 예측값을 구했지만.. 앞서 우리는 입력 데이터로 예측 값을 구하고,  여기에 활성화 함수까지 더해  순전파를 통해 최적화된 값을 구할 수 있었다. 하지만,  이 값이 정말로 잘 계산된 값이라고 할 수 있을까? 이를 검증하지 않는다면, 그리고 이 검증 값을 기반으로 개선이 이루어지지 않는다면 이 뉴런 네트워크라는 것은 결국  신뢰성이 떨어질...