7월, 2021의 게시물 표시

[ Essay - Technology, Essay - Intuition ] Chat GTP시대의 도래와 생각하는 방식에 대해 : 개발자의 미래에 대해

이미지
벌써 올해도 반쯤 지나 뜨거운 여름이 다가왔다. 굉장히 빠르게 지나간듯한 느낌이 드는데  아마 의미있는 시간을 보냈다는 이야기이기 때문에  그렇게 나쁜 신호는 아닐 것 이다. 괴로운 시간이였다면, 1초가 1년 같이 느껴졌을테니 말이다. 더위에 매우 약한 나에게 있어서는 지옥과 같은 시기이기도 하지만 늘 그렇던 것 처럼 에어컨 덕분에 어찌저찌 버틸 수 있을 것 같다. 어쨋든, 이번에는 저번의 에세이 주제, Chat GTP시대의 도래와 생각하는 방식에 대한 이야기에 이어서  과연 개발자의 미래는 어떻게 될 것인가에 대해 이야기를 나누어보려고 한다. 어쩌면 모두가 인식하고 있듯이 지금 2025년 현재,  꽤나 중요한 시기에 직면하고 있는지도 모른다. 왜냐하면, 생성AI의 발전 속도가 생각보다 빠르게 발전하고 있고,  그에 따라 실제 업무에서도 빠르게 사용되어지고 있기 때문이다. 이러한 상황에서 개발자에게 있어서 가장 두려운 점은  당연히 생성AI에 의해 개발자가 대체될 것 이라는 두려움일 것 이다. 이는 개발자에게만 한정된 이야기는 아니지만 말이다. 아마 필드에서 나와 같이 일하고 있거나  개발자로서 직업을 가지려는 생각이 있는 사람이라면  한번쯤은 생각해볼법한 주제라 생각 한다. 물론 미래가 정확히 어떻게 될 지는 알 수 없으나  이런 생각을 함으로써 몇 가지 힌트는 얻게 될지도 모르니  만약 얻게 된다면 미래에 대한 방향성을 조금이나마 올바른 쪽으로 돌릴 수 있을 것 이다. 이 글을 끝맽을 때는 조금이라도 힌트에 도달하기를 바란다. 과거의 역사 이러한 의문에 대한 해결책으로서 일반적으로 자주 사용하는 방법이 있다. 바로 역사를 보는 것 이다. 물론 이러한 역사를 해결책을 찾는거에 대한 전제조건은  우리가 '구 인류'라는 전제조건이 있었을 때 의미가 있다. 그러니깐 현대인도 기원전 8세기의 고대 로마인도  본질적으로 다르지 않다는 것을 인정해야만 한다. 예컨데...

[ Toy Project - Machine Learning, IT, Neural Network] Active Function 그리고 Cost Function과 Loss Function에 대해

이미지
앞선 글에서 나는 뉴런 네트워크를 설계하고,  프로세스를 정했다. 하지만, 곧 문제에 직면했는데, 내가 코세라에서 배운 이론들은 꽤 예전에 이론들이며 시간이 된다면 완수하고 싶지만 나는 그 강의를 아직 완수하지 않았기 때문에 현재 Python에서 사용하고 있는 라이브러리 들은  내가 알던 것들과는 조금 다른 용어들을 사용하고 있었으며, 그에 따른 수식들 또한 달랐다. 물론 이에 대해 다시 강의로 되돌아가  이에 대해 배우는 것이 어쩌면 빠를 수 도 있지만, 나는 먼저 강의를 다 듣는 것 보다는  하나의 토이 프로젝트를 해보는 것이 더 이득이라 판단 했다. 왜냐하면 나는 기본을 바닥에 올려놔야할 때는  바텀 업을 선호하지만, 어느 정도 기본이 쌓였다면  탑 다운 방식을 선호하기 때문이다. 따라서 프로젝트를 진행하기 앞서서  내가 배웠던 것들과 실제 라이브러리에서 사용하는  수식들이 어떻게 다른지 그러니깐 어떻게 발전했는지에 대한 비교가 필요하다고 판단했다. 이에 대한 첫 장으로 먼저  Cost Function과 Active Function에 대한 이야기를 해보려한다. Active Function? Cost Function? Loss Fuction? NN관련에 대해 검색하다보면 익히 나타나는 용어는 Cost Function, Active Function,  Loss Function이 3가지 용어가 자주 보이는 듯 하다. 여기서 Cost Function에 대해서는 학습을 했었고, 과거 포스팅에도 개재한 바 있다. 과거 포스팅에서 Cost Function에 대해  내가 정의 내린 것은 아래와 같다. ( https://nitro04.blogspot.com/2020/01/machine-learning-by-andrew-ng_10.html ) 데이터들의 집합인 가설 함수(Hypothesis Function)와  해당 데이터들의 값과 가장 오차가 작은  즉, 최...