9월, 2021의 게시물 표시

[ Essay - Technology, Essay - Intuition ] Chat GTP시대의 도래와 생각하는 방식에 대해

이미지
올해도 드디어 끝이 보이는 듯 싶다. 최근에 회사의 망년회를 끝내고 이래저래 회식이 늘어나는 듯 하다. 지금 시점에서는 개인적인 스케쥴도 마무리 되었기 때문에 이제는 여유롭게 연말을 즐기며 올해를 마무리 하려고 한다. 비교적 최근에 이사한 곳 근처의 스타벅스가 대학 병원 안에 있고 근처에 공원이 있어서 그런지 개를 대리고 산책하는 노인이나  아이를 동반한 가족이 눈에 띄게 보인다. 꽤나 좋은 곳으로 이사한듯 하다. 개인적으로는 올해 드디어 미루고 미루었던 이직을 하였고  그 이후에 비약적인 성장을 이루었으니  분명 안좋은 일도 있었지만 만족할 수 있는 해를 보내지 않았나 싶다. 내가 도달하려고 하는 곳으로 가려면 아직 갈길이 멀지만  궤도에 오른 것만으로도 큰 성과라면 큰 성과 일 것 이다. 어쨋든 이직하고 많은 일들을 맡게 되었는데 그 과정에서 나는 의도적으로 Chat GTP를 활용하고자 하였고 몇 가지 직감을 얻게 되었는데  이 중 한 가지를 글로 작성하려고 한다. 따라서 올해의 마무리 글은 Chat GTP에 대한 이야기로 마무리 하려고 한다. 서론 불과 약 10년전 IT업계는 원하던 원치 않던간에  한번의 큰 패러다임의 변화를 맞이해야만 했다 바로 아이폰의 등장에 따른 스마트폰의 시대의 도래와  이에 따른 IT업계의 패러다임 변화가 그것이다. 내 기억으로는 아주 격변의 시대였던 걸로 기억하는데 왜냐하면 게임은 물론이고 웹과 백신을 비롯한 모든 솔루션의 변화가 이루어졌다. 이 뿐만 아니라 가볍고 한손의 들어오는 이 디바이스는  그 당시에는 조금 비싸다는 인식이 있었지만  감추려고 해도 감출 수 없는 뛰어난 유용성으로 회의론을 금세 종식시켰고 이에 대한 결과로 어린아이 부터 노인 까지 작은 컴퓨터를 가지게 되었고 이는 당연하게도 IT업계의 전체적인 호황을 가져다주었다.  그리고 질서는 다시 한번 재정렬되었다. 이러한 패러다임의 변화의 증거로 언어 또한 변하게 되었는데...

[ Neural Network, Python ] Python에서 뉴런 네트워크는 어떻게 표현되는가? : 최적화와 라이브러리를 이용한 구현, 클래스 구현

이미지
앞선 글에서  가벼운 이론에 대한 설명, 그리고 단층 퍼셉트론(SLP)와 다층 퍼셉트론(MLP)에 대한 설명과 원시적인 코드 작성 까지 이야기를 나누었다. 다음으로 코드를 조금 정리할 필요가 있다. 왜냐하면, 프로그래밍 특성상 같은 데이터를 담을 변수를 일일이 선언하는 것은 나중에 코드를 수정할 때 시간을 잡아먹는 원인이 되기도 하며, 버그를 낳을 수 있는 리스크 또한 증가하게 된다. 따라서 특히 가중치(Weight) 부분은 손을 볼 필요가 있다. 코드 최적화 사실 최적화라고 해봤자  그리 대단한 것은 아니다. 단순히 같은 속성을 가지고 있는 데이터들을  하나의 변수로 묶을 뿐이다. 최적화 할 코드는 이전 포스팅에서 다루었던 다층 퍼셉트론의 예제 코드이다. 해당 코드는 아래와 같다. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 inputs  =  [ 3 ,  1 ,  5. 5 ]   weights11  =  [ 0. 3 ,  0. 4 ,  - 0. 7 ] weights12  =  [ 0. 5 ,  - 0. 33 ,  - 0. 26 ] weights13  =  [ - 0. 26 ,  - 0. 57 ,  0. 57 ] weights14  =  [ 0. 7 ,  - 0. 22 ,  0. 43 ]   weights21  =  [ 0. 5 ,  - 0. 3 ,  - 0. 2 ,  0. 4 ] weights22  =  [ 0. 33 ,  - 0. 33 ,  - 0. 34 ,  0. 2 ]   bias1  =   2   b...

[ Neural Network, Python, Perceptron ] Python에서 뉴런 네트워크는 어떻게 표현되는가? : SLP와 MPL 그리고 코드에 대해

이미지
뉴런 네트워크를 구현하기 앞서서  먼저 Python에서 실제로 어떻게 뉴런 네트워크를 표현하는가에 대해 확인해 볼 필요가 있다. 왜냐하면 내가 이전에 배울 때 사용했던 것은  Octave라는 툴 이지만 이것 자체로는 애플리케이션을 만들 수 없다. 따라서 뉴런 네트워크가 Python에서 어떻게 표현되는지에 대해 먼저 확인하고 넘어가보자. Python에서는 뉴런 네트워크에 대한  훌륭한 라이브러리들이 많다고 하니 기대해봄직하다. 뉴런 네트워크 아키텍처 바로 본론으로 넘어갈 수 있겠지만, 다시 한번 뉴런 네트워크 아키텍처에 대해 언급하고 넘어가보자. 위의 사진은 간단한 뉴런 네트워크 아키텍처를 보여 준다. 각 3개의 입력 레이어의 요소와 4개의 히든 레이어를 통해  2개의 출력 레이어를 산출 한다. 실제 계산들은 히든 레이어에서 계산되며, 히든 레이어의 수에 따라 혹은 내부 요소의 개수에 따라 해당 뉴런 네트워크는 비교적 좀 더 정확한 결과물을 산출해 줄 수 있으나 뉴런 네트워크에서 중요한 이슈 중 하나인  계산 비용이 증가한다는 단점이 있다. 따라서 뉴런 네트워크를 가동할 하드웨어에 따라 적절한 히든 레이어의 개수와 요소의 개수를 결정하는 것이 뉴런 네트워크라는 전체 시스템의 최적화를 결정한다고 말할 수도 있다. (최적화는 활성화 함수에서도 가능하다.) 위의 사진은 히든 레이어 내부의 계산식을 보여 준다. 히든 레이어 내부에서는 입력 레이어의 각 요소들을 매개변수로 삼아  가중치(Weights)를 곱해 값을 더하고, 마지막에 편향(Bias)을 더해 하나의 뉴런을 완성 한다. 편향에 대해서는 이전에 기술 에세이에서 다룬바가 있다. 하지만 여기에 한 가지 더 과정을 거쳐야만 하는데 바로 이 계산한 뉴런 값을 실제 전체 뉴런 네트워크에 ...

[ Essay - Technology, Neural Network, IT, Math] 왜 뉴런 네트워크에서 편향(bias)이 필요한가?

이미지
일반적으로 Input으로 부터 시작해  히든 레이어를 거쳐,  Output의 값을 추출해 내는 것이 뉴런 네트워크이다. 새로운 토이 프로젝트에 진행하기 앞서 나는 우선 Python에서 뉴런 네트워크가 어떻게  표현되는지에 대해 알아야 할 필요가 있었고, 이에 대한 튜토리얼을 포함해  과거에 배웠던 이론들과 연결시키는 작업을 하고 있었다. 그런 도중, 나는 갑자기 편향(Bias)값에 대해 의문점이 들었다. 왜 편향 값이 필요할까에 대한 의문이다. 물론 그런 것은 그냥 넘어 갈 수도 있다. 엄밀히 말하면  이런 의문들은 단순한 개발자로서는 필요 없다. 하지만 이는 탐구하는 것을 좋아하는  나의 입장에서는 무척이나 중요한 일이다. 그렇기에  이번에는 좀 더 나아가기에 앞서 이 편향(Bias)이라는 것이 왜 필요한지에 대해 이야기를 해보자. 편향에 대한 정의 한 가지 알아야할 것은 편향은  뉴런 네트워크에서 나온 용어가 아니라는 점일 것이다. 정확히 말하면, 이 편향이라는 개념은 뉴런 네트워크 이론이  대수학(Generic Algebra)에서 차용해온 용어(T erm )로서 뉴런 네트워크만의 개념은 아니다. 위키피디아 영문판에 따르면 통계에서 사용하는  편향에 대해 아래와 같이 설명한다. Statistical bias is a feature of a statistical technique or  of its results  통계적 편향은 통계적 기법 또는 통계의 결과에 대한  특징(feature)로서 where by the expected value of the results differs  실제 정량적인 매개변수와 다르게  from the true underlying quantitative parameter being estimated 결과의 예상 값이 추정하는 것을 말한다. 즉, 명확히 정략적으로 표현되는 것이 아닌 추정 값이라는 이...